Publications

Genomics. 2004-06-01; 83.6: 1053-62.

Detailed four-way comparative mapping and gene order analysis of the canine ctvm locus reveals evolutionary chromosome rearrangements

Andelfinger G, Hitte C, Etter L, Guyon R, Bourque G, Tesler G, Pevzner P, Kirkness E, Galibert F, Benson DW

PMID: 15177558

Abstract

Canine tricuspid valve malformation (CTVM) maps to canine chromosome 9 (CFA9), in a region syntenic with gene-dense human chromosome 17q. To define synteny blocks, we analyzed 148 markers on CFA9 using radiation hybrid mapping and established a four-way comparative map for human, mouse, rat, and dog. We identified a large number of rearrangements, allowing us to reconstruct the evolutionary history of individual synteny blocks and large chromosomal segments. A most parsimonious rearrangement scenario for all four species reveals that human chromosome 17q differs from CFA9 and the syntenic rodent chromosomes through two macroreversals of 9.2 and 23 Mb. Compared to a recovered ancestral gene order, CFA9 has undergone 11 reversals of <3 Mb and 2 reversals of >3 Mb. Interspecies reuse of breakpoints for micro- and macrorearrangements was observed. Gene order and content of the ctvm interval are best extrapolated from murine data, showing that multispecies genome rearrangement scenarios contribute to identifying gene content in canine mapping studies.

Metrics